top of page

Grupo profesional

Público·29 miembros


The term "planetary nebula" is a misnomer because they are unrelated to planets. The term originates from the planet-like round shape of these nebulae observed by astronomers through early telescopes. The first usage may have occurred during the 1780s with the English astronomer William Herschel who described these nebulae as resembling planets; however, as early as January 1779, the French astronomer Antoine Darquier de Pellepoix described in his observations of the Ring Nebula, "very dim but perfectly outlined; it is as large as Jupiter and resembles a fading planet".[5][6][7]Though the modern interpretation is different, the old term is still used.



Planetary nebulae probably play a crucial role in the chemical evolution of the Milky Way by expelling elements into the interstellar medium from stars where those elements were created. Planetary nebulae are observed in more distant galaxies, yielding useful information about their chemical abundances.

Starting from the 1990s, Hubble Space Telescope images revealed that many planetary nebulae have extremely complex and varied morphologies. About one-fifth are roughly spherical, but the majority are not spherically symmetric. The mechanisms that produce such a wide variety of shapes and features are not yet well understood, but binary central stars, stellar winds and magnetic fields may play a role.

The first planetary nebula discovered (though not yet termed as such) was the Dumbbell Nebula in the constellation of Vulpecula. It was observed by Charles Messier on July 12, 1764 and listed as M27 in his catalogue of nebulous objects.[10] To early observers with low-resolution telescopes, M27 and subsequently discovered planetary nebulae resembled the giant planets like Uranus. As early as January 1779, the French astronomer Antoine Darquier de Pellepoix described in his observations of the Ring Nebula, "a very dull nebula, but perfectly outlined; as large as Jupiter and looks like a fading planet".[5][6][7]

The nature of these objects remained unclear. In 1782, William Herschel, discoverer of Uranus, found the Saturn Nebula (NGC 7009) and described it as "A curious nebula, or what else to call it I do not know". He later described these objects as seeming to be planets "of the starry kind".[11] As noted by Darquier before him, Herschel found that the disk resembled a planet but it was too faint to be one. In 1785, Herschel wrote to Jérôme Lalande:

These are celestial bodies of which as yet we have no clear idea and which are perhaps of a type quite different from those that we are familiar with in the heavens. I have already found four that have a visible diameter of between 15 and 30 seconds. These bodies appear to have a disk that is rather like a planet, that is to say, of equal brightness all over, round or somewhat oval, and about as well defined in outline as the disk of the planets, of a light strong enough to be visible with an ordinary telescope of only one foot, yet they have only the appearance of a star of about ninth magnitude.[12]

On August 29, 1864, Huggins was the first to analyze the spectrum of a planetary nebula when he observed Cat's Eye Nebula.[10] His observations of stars had shown that their spectra consisted of a continuum of radiation with many dark lines superimposed. He found that many nebulous objects such as the Andromeda Nebula (as it was then known) had spectra that were quite similar. However, when Huggins looked at the Cat's Eye Nebula, he found a very different spectrum. Rather than a strong continuum with absorption lines superimposed, the Cat's Eye Nebula and other similar objects showed a number of emission lines.[14] Brightest of these was at a wavelength of 500.7 nanometres, which did not correspond with a line of any known element.[17]

The central stars of planetary nebulae are very hot.[4] Only when a star has exhausted most of its nuclear fuel can it collapse to a small size. Planetary nebulae are understood as a final stage of stellar evolution. Spectroscopic observations show that all planetary nebulae are expanding. This led to the idea that planetary nebulae were caused by a star's outer layers being thrown into space at the end of its life.[10]

When the hydrogen source in the core starts to diminish, gravity starts compressing the core, causing a rise in temperature to about 100 million K.[29] Such higher core temperatures then make the star's cooler outer layers expand to create much larger red giant stars. This end phase causes a dramatic rise in stellar luminosity, where the released energy is distributed over a much larger surface area, which in fact causes the average surface temperature to be lower. In stellar evolution terms, stars undergoing such increases in luminosity are known as asymptotic giant branch stars (AGB).[29] During this phase, the star can lose 50 to 70% of its total mass from its stellar wind.[30]

Subsequent generations of stars formed from such nebulae also tend to have higher metallicities. Although these metals are present in stars in relatively tiny amounts, they have marked effects on stellar evolution and fusion reactions. When stars formed earlier in the universe they theoretically contained smaller quantities of heavier elements.[37] Known examples are the metal poor Population II stars. (See Stellar population.)[38][39] Identification of stellar metallicity content is found by spectroscopy.

About 3000 planetary nebulae are now known to exist in our galaxy,[45] out of 200 billion stars. Their very short lifetime compared to total stellar lifetime accounts for their rarity. They are found mostly near the plane of the Milky Way, with the greatest concentration near the Galactic Center.[46]

Only about 20% of planetary nebulae are spherically symmetric (for example, see Abell 39).[47] A wide variety of shapes exist with some very complex forms seen. Planetary nebulae are classified by different authors into: stellar, disk, ring, irregular, helical, bipolar, quadrupolar,[48] and other types,[49] although the majority of them belong to just three types: spherical, elliptical and bipolar. Bipolar nebulae are concentrated in the galactic plane, probably produced by relatively young massive progenitor stars; and bipolars in the galactic bulge appear to prefer orienting their orbital axes parallel to the galactic plane.[50] On the other hand, spherical nebulae are probably produced by old stars similar to the Sun.[1]

Theoretical models predict that planetary nebulae can form from main-sequence stars of between one and eight solar masses, which puts the progenitor star's age at greater than 40 million years. Although there are a few hundred known open clusters within that age range, a variety of reasons limit the chances of finding a planetary nebula within.[46] For one reason, the planetary nebula phase for more massive stars is on the order of millennia, which is a blink of the eye in astronomic terms. Also, partly because of their small total mass, open clusters have relatively poor gravitational cohesion and tend to disperse after a relatively short time, typically from 100 to 600 million years.[64]

The distances to planetary nebulae are generally poorly determined,[65] but the Gaia mission is now measuring direct parallactic distances between their central stars and neighboring stars.[66] It is also possible to determine distances to nearby planetary nebula by measuring their expansion rates. High resolution observations taken several years apart will show the expansion of the nebula perpendicular to the line of sight, while spectroscopic observations of the Doppler shift will reveal the velocity of expansion in the line of sight. Comparing the angular expansion with the derived velocity of expansion will reveal the distance to the nebula.[24]

The issue of how such a diverse range of nebular shapes can be produced is a debatable topic. It is theorised that interactions between material moving away from the star at different speeds gives rise to most observed shapes.[49] However, some astronomers postulate that close binary central stars might be responsible for the more complex and extreme planetary nebulae.[67] Several have been shown to exhibit strong magnetic fields,[68] and their interactions with ionized gas could explain some planetary nebulae shapes.[54]

Celestron NexStar 4SE: was $679.99, now $543.99 at Best Buy (opens in new tab) and $494.01 at Amazon (opens in new tab) (low stock)Save more than 20% on this excellent beginner-friendly scope. Use Celestron's SkyAlign technology to find your location automatically and slew to your desired night sky targets. You'll be treated to crisp views of the moon and the brighter planets, but we'd suggest spending some of the savings you make here on a 32mm eyepiece for even better views.

The overall build of this refractor is impressive. The StarPointer is a pleasant surprise since it's able to pick out faint stars under moderate light pollution for an accurate star-hopping experience.

Boasting the build quality we've come to expect from the other models in Celestron's NexStar range, the 4SE is optically comparable with the aforementioned Celestron Astro-Fi 102 but instead of relying on a smartphone, this model comes with a chunky and tactile hand controller. It is a good buy for beginner astronomers as it's very simple to use and produces a clear and bright picture which is why we gave it four out of five stars during our Celestron NexStar 4SE telescope review.

Celestron's StarSense technology is built into this reflector, which provides an extremely easy way to align the telescope. The skywatcher needs to download the StarSense app from Google or Apple (opens in new tab) and take a smartphone image through the eyepiece, the app then works out which stars are in the telescope's field of view to calculate which way it is facing, clever.

A 130mm aperture means that plenty of light is able to travel through the lens, making the night sky targets clearly visible and giving you amazing views of stars. A focal length of 650mm means you'll get a wide field of view (you can see a lot at once). 041b061a72

  • Acerca de

    ¡Bienvenido al grupo! Podrás conectarte con otros miembros, ...

    Página del grupo: Groups_SingleGroup
    bottom of page